Premium
The GPER Agonist G‐1 Induces Mitotic Arrest and Apoptosis in Human Vascular Smooth Muscle Cells Independent of GPER
Author(s) -
Gui Yu,
Shi Zhan,
Wang ZengYong,
Li JingJing,
Xu Can,
Tian RuiJuan,
Song XinXing,
Walsh Michael P.,
Li Dong,
Gao Jie,
Zheng XiLong
Publication year - 2015
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.24817
Subject(s) - gper , microbiology and biotechnology , mapk/erk pathway , apoptosis , cell growth , mitosis , biology , signal transduction , estrogen receptor , biochemistry , genetics , cancer , breast cancer
The G protein‐coupled estrogen receptor (GPER) has been implicated in the regulation of smooth muscle cell (SMC) proliferation. The GPER selective agonist G‐1 has been a useful tool for exploring the biological roles of GPER in a variety of experimental settings, including SMC proliferation. The present study, originally designed to investigate cellular and signaling mechanisms underlying the regulatory role of GPER in vascular SMC proliferation using G‐1, unexpectedly revealed off‐target effects of G‐1. G‐1(1–10 μM) inhibited bromodeoxyuridine (BrdU) incorporation of human SMCs and caused G2/M cell accumulation. G‐1 treatment also increased mitotic index concurrent with a decrease in phosphorylation of Cdk1 (Tyr 15) and an increase in phosphorylation of the mitotic checkpoint protein BuBR1. Furthermore, G‐1 caused microtubule disruption, mitotic spindle damage, and tubulin depolymerization. G‐1 induced cell apoptosis as indicated by the appearance of TUNEL‐positive and annexin V‐positive cells with enhanced cleavage of caspases 3 and 9. However, neither the GPER antagonist G‐15 nor the MAPK kinase inhibitor PD98059 prevented these G‐1 effects. Down‐regulation of GPER or p44/42 MAPK with siRNA transfection also did not affect the G‐1‐induced apoptosis. We conclude that G‐1 inhibits proliferation of SMCs through mechanisms involving mitotic arrest and apoptosis, independent of GPER and the MAPK pathway. J. Cell. Physiol. 230: 885–895, 2015. © 2014 Wiley Periodicals, Inc.