Premium
Effect of CTGF/CCN2 on Osteo/Cementoblastic and Fibroblastic Differentiation of a Human Periodontal Ligament Stem/Progenitor Cell Line
Author(s) -
Yuda Asuka,
Maeda Hidefumi,
Fujii Shinsuke,
Monnouchi Satoshi,
Yamamoto Naohide,
Wada Naohisa,
Koori Katsuaki,
Tomokiyo Atsushi,
Hamano Sayuri,
Hasegawa Daigaku,
Akamine Akifumi
Publication year - 2015
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.24693
Subject(s) - ctgf , growth factor , periodontal fiber , microbiology and biotechnology , connective tissue , extracellular matrix , stem cell , chemistry , biology , pathology , medicine , dentistry , biochemistry , receptor
Appropriate mechanical loading during occlusion and mastication play an important role in maintaining the homeostasis of periodontal ligament (PDL) tissue. Connective tissue growth factor (CTGF/CCN2), a matricellular protein, is known to upregulate extracellular matrix production, including collagen in PDL tissue. However, the underlying mechanisms of CTGF/CCN2 in regulation of PDL tissue integrity remain unclear. In this study, we investigated the effect of CTGF/CCN2 on osteo/cementoblastic and fibroblastic differentiation of human PDL stem cells using the cell line 1–11. CTGF/CCN2 expression in rat PDL tissue and human PDL cells (HPDLCs) was confirmed immunohisto/cytochemically. Mechanical loading was found to increase gene expression and secretion of CTGF/CCN2 in HPDLCs. CTGF/CCN2 upregulated the proliferation and migration of 1–11 cells. Furthermore, increased bone/cementum‐related gene expression in this cell line led to mineralization. In addition, combined treatment of 1–11 cells with CTGF/CCN2 and transforming growth factor‐β1 (TGF‐β1) significantly promoted type I collagen and fibronectin expression compared with that of TGF‐β1 treatment alone. Thus, these data suggest the underlying biphasic effects of CTGF/CCN2 in 1–11 cells, inducible osteo/cementoblastic, and fibroblastic differentiation dependent on the environmental condition. CTGF/CCN2 may contribute to preservation of the structural integrity of PDL tissue, implying its potential use as a therapeutic agent for PDL regeneration. J. Cell. Physiol. 230: 150–159, 2015. © 2014 Wiley Periodicals, Inc.