z-logo
Premium
Galectin‐3 deficiency protects pancreatic islet cells from cytokine‐triggered apoptosis in vitro
Author(s) -
Saksida Tamara,
Nikolic Ivana,
Vujicic Milica,
Nilsson Ulf J.,
Leffler Hakon,
Lukic Miodrag L.,
Stojanovic Ivana,
StosicGrujicic Stanislava
Publication year - 2013
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.24318
Subject(s) - apoptosis , microbiology and biotechnology , islet , biology , galectin , galectin 3 , programmed cell death , cytokine , cancer research , immunology , endocrinology , diabetes mellitus , biochemistry
Beta cell apoptosis is a hallmark of diabetes. Since we have previously shown that galectin‐3 deficient (LGALS3 −/− ) mice are relatively resistant to diabetes induction, the aim of this study was to examine whether beta cell apoptosis depends on the presence of galectin‐3 and to delineate the underlying mechanism. Deficiency of galectin‐3, either hereditary or induced through application of chemical inhibitors, β‐lactose or TD139, supported survival and function of islet beta cells compromised by TNF‐α + IFN‐γ + IL‐1β stimulus. Similarly, inhibition of galectin‐3 by β‐lactose or TD139 reduced cytokine‐triggered apoptosis of beta cells, leading to conclusion that endogenous galectin‐3 propagates beta apoptosis in the presence of an inflammatory milieu . Exploring apoptosis‐related molecules expression in primary islet cells before and after treatment with cytokines we found that galectin‐3 ablation affected the expression of major components of mitochondrial apoptotic pathway, such as BAX, caspase‐9, Apaf, SMAC, caspase‐3, and AIF. In contrast, anti‐apoptotic molecules Bcl‐2 and Bcl‐XL were up‐regulated in LGALS3 −/− islet cells when compared to wild‐type (WT) counterparts (C57BL/6), resulting in increased ratio of anti‐apoptotic versus pro‐apoptotic molecules. However, Fas‐triggered apoptotic pathway as well as extracellular signal‐regulated kinase 1/2 (ERK1/2) was not influenced by LGALS‐3 deletion. All together, these results point to an important role of endogenous galectin‐3 in beta cell apoptosis in the inflammatory milieu that occurs during diabetes pathogenesis and implicates impairment of mitochondrial apoptotic pathway as a key event in protection from beta cell apoptosis in the absence of galectin‐3. J. Cell. Physiol. 228: 1568–1576, 2013. © 2012 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here