Premium
Defective autophagy in multidrug resistant cells may lead to growth inhibition by BH3‐mimetic gossypol
Author(s) -
Ahn JunHo,
Jang GunHee,
Lee Michael
Publication year - 2013
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.24305
Subject(s) - gossypol , 3t3 cells , apoptosis , flow cytometry , autophagy , cell culture , programmed cell death , cytotoxic t cell , biology , chemistry , microbiology and biotechnology , cancer research , biochemistry , transfection , in vitro , genetics
The clinical efficacy of many chemotherapeutic agents has been reduced due to the development of drug resistance. In this article, we aimed to validate gossypol, a natural BH3 mimetic found in cottonseeds, as a potential therapeutic to overcome multidrug resistance (MDR). Gossypol was found to retain its efficacy in v‐Ha‐ ras ‐transformed NIH 3T3 cells that overexpressed P‐glycoprotein (Ras‐NIH 3T3/Mdr), which was similar to the efficacy observed in their parental counterparts (Ras‐NIH 3T3). A rhodamine assay revealed that the alteration of MDR activity did not contribute to the cytotoxic effect of gossypol. Gossypol caused a G 2 /M arrest by the induction of p21 Cip1 and the down‐regulation of p27 Kip1 expression in Ras‐NIH 3T3 cells, whereas no significant G 2 /M arrest was exhibited in Ras‐NIH 3T3/Mdr cells. Surprisingly, a 48‐h treatment with gossypol induced apoptotic cell death in Ras‐NIH 3T3 cells; however, gossypol induced both apoptosis and necrosis in Ras‐NIH 3T3/Mdr cells, as determined with flow cytometry analysis. More notably, gossypol preferentially induced autophagy in Ras‐NIH 3T3 cells but not in Ras‐NIH 3T3/Mdr cells. Coimmunoprecipitation and flow cytometric analysis revealed that gossypol‐induced autophagy is independent of the dissociation of Beclin 1 from Bcl‐2 in Ras‐NIH 3T3 cells. Taken together, these results suggest that the antiproliferative activity of gossypol appears to be due to cell‐cycle arrest at the G 2 /M phase, with the induction of apoptosis in Ras‐NIH 3T3 cells. In addition, defective autophagy might contribute to apoptotic and necrotic cell death in response to gossypol in Ras‐NIH 3T3/Mdr cells. J. Cell. Physiol. 228: 1496–1505, 2013. © 2012 Wiley Periodicals, Inc.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom