Premium
Osteosarcoma cells induce endothelial cell proliferation during neo‐angiogenesis
Author(s) -
de Nigris Filomena,
Mancini Francesco Paolo,
Schiano Concetta,
Infante Teresa,
Zullo Alberto,
Minucci Pellegrino Biagio,
AlOmran Mohammed,
Giordano Antonio,
Napoli Claudio
Publication year - 2013
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.24234
Subject(s) - angiogenesis , cyclin dependent kinase 2 , cell growth , microbiology and biotechnology , cyclin dependent kinase 5 , cyclin dependent kinase , cancer research , endothelial stem cell , in vivo , cyclin e , apoptosis , biology , kinase , chemistry , in vitro , cell cycle , protein kinase a , biochemistry
Understanding the mechanisms inducing endothelial cell (EC) proliferation following tumor microenvironment stimuli may be important for the development of antiangiogenic therapies. Here, we show that cyclin‐dependent kinase 2 and 5 (Cdk2, Cdk5) are important mediators of neoangiogenesis in in vitro and in vivo systems. Furthermore, we demonstrate that a specific Yin Yang 1 (YY1) protein‐dependent signal from osteosarcoma (SaOS) cells determines proliferation of human aortic endothelial cells (HAECs). Following tumor cell stimuli, HAECs overexpress Cdk2 and Cdk5, display increased Cdk2 activity, undergo enhanced proliferation, and form capillary‐like structures. Moreover, Roscovitine, an inhibitor of Cdks, blunted overexpression of Cdk2 and Cdk5 and Cdk2 activity induced by the YY1‐dependent signal secreted by SaOS cells. Furthermore, Roscovitine decreased HAEC proliferation and angiogenesis (the latter by 70% in in vitro and 50% in in vivo systems; P < 0.01 vs. control). Finally, the finding that Roscovitine triggers apoptosis in SaOS cells as well as in HAECs by activating caspase‐3/7 indicates multiple mechanisms for the potential antitumoral effect of Roscovitine. Present work suggests that Cdk2 and Cdk5 might be pharmacologically accessible targets for both antiangiogenic and antitumor therapy. J. Cell. Physiol. 228: 846–852, 2013. © 2012 Wiley Periodicals, Inc.