Premium
Neural differentiation of mesenchymal stem cells influences chemotactic responses to HGF
Author(s) -
Zheng Bing,
Wang Chunyan,
He Lihong,
Xu Xiaojing,
Qu Jing,
Hu Jun,
Zhang Huanxiang
Publication year - 2013
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.24114
Subject(s) - hepatocyte growth factor , mesenchymal stem cell , chemotaxis , microbiology and biotechnology , pi3k/akt/mtor pathway , protein kinase b , mapk/erk pathway , biology , cellular differentiation , cell migration , phosphorylation , signal transduction , chemistry , immunology , cell , receptor , genetics , gene
Recently, mesenchymal stem cells (MSCs) have been extensively used for cell‐based therapies in neuronal degenerative disease. Although much effort has been devoted to the delineation of factors involved in the migration of MSCs, the relationship between the chemotactic responses and the differentiation status of these cells remains elusive. Here, we report that MSCs in varying neural differentiation states display different chemotactic responses to hepatocyte growth factor (HGF): first, the number of chemotaxing MSCs and the optimal concentrations of HGF that induced the peak migration varied greatly; second, time‐lapse video analysis showed that MSCs in certain differentiation state migrated more efficiently toward HGF; third, the phosphorylation levels of Akt, ERK1/2, SAPK/JNK, and p38MAPK were closely related to the differentiation levels of MSCs subjected to HGF; and finally, although inhibition of ERK1/2 signaling significantly attenuated HGF‐stimulated transfilter migration of both undifferentiated and differentiating MSCs, abolishment of PI3K/Akt, p38MAPK, or SAPK/JNK signaling only decreased the number of migrated cells in certain differentiation state(s). Blocking of PI3K/Akt or MAPK signaling impaired the migration efficiency and/or speed, the extent of which depends on the cell differentiation states. Meanwhile, F‐actin rearrangement, which is essential for MSCs chemotaxis, was induced by HGF, and the time points of cytoskeletal reorganization were different among these cells. Collectively, these results demonstrate that neural differentiation of MSCs influences their chemotactic responses to HGF: MSCs in varying differentiation states possess different migratory capacities, thereby shedding light on optimization of the therapeutic potential of MSCs to be employed for neural regeneration after injury. J. Cell. Physiol. 228: 149–162, 2013. © 2012 Wiley Periodicals, Inc.