Premium
Wnt/β‐catenin signaling pathway and thioredoxin‐interacting protein (TXNIP) mediate the “glucose sensor” mechanism in metastatic breast cancer‐derived cells MDA‐MB‐231
Author(s) -
Vaira Sergio,
Friday Ellen,
Scott Keith,
Conrad Steven,
Turturro Francesco
Publication year - 2012
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.22757
Subject(s) - txnip , thioredoxin interacting protein , wnt signaling pathway , dkk1 , lrp6 , phosphorylation , signal transduction , catenin , microbiology and biotechnology , lrp5 , chemistry , cyclin d1 , biology , cancer research , endocrinology , thioredoxin , biochemistry , cell cycle , cell , oxidative stress
In this study we investigated the effect of glucose on GSK3β and β‐catenin expression and the involvement of the N‐linked glycosylation and hexosamine pathways in the Wnt canonical pathway in response to in vitro conditions resembling normoglycemia (5 mmol) and hyperglycemia (20 mmol) in the metastatic breast cancer‐derived cell line MDA‐MB‐231. We also investigated the relationship between this circuitry and the thioredoxin‐interacting protein (TXNIP) regulation that seems to be related. MDA‐MB‐231 cells were grown either in 5 or 20 mM glucose chronically prior to plating. For glucose shift (5/20), cells were plated in 5 mM glucose and shifted to 20 mM at time 0. Both protein and mRNA levels for GSK3β but only the protein expression for β‐catenin, were increased in response to high glucose. Furthermore, we assessed the response of GSK3β, β‐catenin, and TXNIP to inhibition of the N‐linked glycosylation, hexosamine, and Wnt pathways. Wnt signaling pathway activation was validated by specific reporter assay. We show that high levels of glucose regulate mRNA and protein expression of GSK3β, and consequently higher levels of activated β‐catenin protein, which locates to the nucleus and is associated with increased levels of cyclin D1 expression. This event coincides with increased level of N‐terminal Ser 9 phosphorylation of GSK3β protein. The inhibition of both the hexosamine pathway and N‐linked glycosylation along with Wnt signaling pathway by sFRP1 and DKK1 is associated with significant decrease of the protein levels of GSK3β, β‐catenin, and TXNIP RNA. Our work illuminates a novel and never described before function of this signaling pathway that relates glucose metabolism with redox regulation mechanism. J. Cell. Physiol. 227: 578–586, 2012. © 2011 Wiley Periodicals, Inc.