z-logo
Premium
Reduced levels of folate transporters (PCFT and RFC) in membrane lipid rafts result in colonic folate malabsorption in chronic alcoholism
Author(s) -
Wani Nissar Ahmad,
Kaur Jyotdeep
Publication year - 2011
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.22525
Subject(s) - transporter , lipid raft , downregulation and upregulation , ethanol , caco 2 , vesicle , chemistry , membrane , biology , biochemistry , cell , gene
We studied the effect of chronic ethanol ingestion on folate transport across the colonic apical membranes (CAM) in rats. Male Wistar rats were fed 1 g/kg body weight/day ethanol (20%) solution orally for 3 months and folate transport was studied in the isolated colon apical membrane vesicles. The folate transport was found to be carrier mediated, saturable, with pH optima at 5.0. Chronic ethanol ingestion reduced the folate transport across the CAM by decreasing the affinity of transporters (high K m ) for the substrate and by decreasing the number of transporter molecules (low V max ) on the colon luminal surface. The decreased transport activity at the CAM was associated with down‐regulation of the proton‐coupled folate transporter (PCFT) and the reduced folate carrier (RFC) which resulted in decreased PCFT and RFC protein levels in the colon of rats fed alcohol chronically. Moreover, the PCFT and the RFC were found to be distributed in detergent insoluble fraction of the CAM in rats. Floatation experiments on Optiprep density gradients demonstrated the association of the PCFT and the RFC protein with lipid rafts (LR). Chronic alcoholism decreased the PCFT and the RFC protein levels in the CAM LR in accordance with the decreased synthesis. Hence, we propose that downregulation in the expression of the PCFT and the RFC in colon results in reduced levels of these transporters in colon apical membrane LR as a mechanism of folate malabsorption during chronic alcoholism. J. Cell. Physiol. 226: 579–587, 2011. © 2010 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here