Premium
Cancer hallmarks in induced pluripotent cells: New insights
Author(s) -
Malchenko Sergey,
Galat Vasiliy,
Seftor Elisabeth A.,
Vanin Elio F.,
Costa Fabricio F.,
Seftor Richard E.B.,
Soares Marcelo B.,
Hendrix Mary J.C.
Publication year - 2010
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.22280
Subject(s) - reprogramming , biology , embryonic stem cell , nodal signaling , induced pluripotent stem cell , nodal , microrna , genetics , cancer research , microbiology and biotechnology , cell , gene , gastrulation
Abstract Studies are beginning to emerge that demonstrate intriguing differences between human‐induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs). Here, we investigated the expression of key members of the Nodal embryonic signaling pathway, critical to the maintenance of pluripotency in hESCs. Western blot and real‐time RT‐PCR analyses reveal slightly lower levels of Nodal (a TGF‐β family member) and Cripto‐1 (Nodal's co‐receptor) and a dramatic decrease in Lefty (Nodal's inhibitor and TGF‐β family member) in hiPSCs compared with hESCs. The noteworthy drop in hiPSC's Lefty expression correlated with an increase in the methylation of Lefty B CpG island. Based on these findings, we addressed a more fundamental question related to the consequences of epigenetically reprogramming hiPSCs, especially with respect to maintaining a stable ESC phenotype. A global comparative analysis of 365 microRNAs (miRs) in two hiPSC versus four hESC lines ultimately identified 10 highly expressed miRs in hiPCSs with >10‐fold difference, which have been shown to be cancer related. These data demonstrate cancer hallmarks expressed by hiPSCs, which will require further assessment for their impact on future therapies. J. Cell. Physiol. 225: 390–393, 2010. © 2010 Wiley‐Liss, Inc.