Premium
Cigarette smoke extract induces HO‐1 expression in mouse cerebral vascular endothelial cells: Involvement of c‐Src/NADPH oxidase/PDGFR/JAK2/STAT3 pathway
Author(s) -
Shih RueyHorng,
Lee ITa,
Hsieh HsiLung,
Kou Yu Ru,
Yang ChuenMao
Publication year - 2010
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.22270
Subject(s) - nadph oxidase , transfection , heme oxygenase , heme , chemistry , proto oncogene tyrosine protein kinase src , microbiology and biotechnology , oxidase test , oxidative stress , signal transduction , biology , biochemistry , enzyme , gene
Several chemicals present in cigarette smoke (CS) have been reported to induce heme oxygenase‐1 (HO‐1) expression, which represents a prime defense mechanism in protecting the cells from stress‐dependent adverse effects on peripheral vascular system. However, the effects of cigarette smoke extract (CSE) on HO‐1 induction and the mechanisms underlying CSE‐induced HO‐1 expression in brain vessels are not completely understood. Here, we used a mouse brain endothelial cell culture (bEnd.3) to investigate the effect of CSE on HO‐1 induction and the mechanisms underlying CSE‐induced HO‐1 expression in cerebral vessels. We demonstrated that sublethal concentrations of CSE (30 µg/ml) induced submaximal HO‐1 expression in bEnd.3 cells. NADPH oxidase‐dependent ROS generation played a key role in CSE‐induced HO‐1 expression. CSE‐induced HO‐1 expression was mediated through PDGFR/JAK2/STAT3 cascade, which was observed by pretreatment with the respective pharmacological inhibitors or transfection with PDGFR shRNA. CSE activated NADPH oxidase through c‐Src in bEnd.3 cells. Taken together, these results suggested that, in bEnd.3 cells, CSE‐induced HO‐1 expression was mediated through PDGFR/JAK2/STAT3 cascade, which was regulated by c‐Src or c‐Src activated‐NADPH oxidase/ROS. J. Cell. Physiol. 225: 741–750, 2010. © 2010 Wiley‐Liss, Inc.