Premium
Cross‐talk between MAP kinase pathways is involved in IGF‐independent, IGFBP‐6‐induced Rh30 rhabdomyosarcoma cell migration
Author(s) -
Fu Ping,
Liang Guang Jun,
Khot Sahil S.,
Phan Robert,
Bach Leon A.
Publication year - 2010
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.22156
Subject(s) - phosphorylation , protein kinase b , microbiology and biotechnology , mapk/erk pathway , p38 mitogen activated protein kinases , cell migration , chemotaxis , mitogen activated protein kinase , signal transduction , kinase , cancer research , chemistry , growth factor , rhabdomyosarcoma , biology , cell , biochemistry , receptor , medicine , sarcoma , pathology
Insulin‐like growth factor binding protein‐6 (IGFBP‐6) inhibits the tumorigenic properties of IGF‐II‐dependent cancer cells by directly inhibiting IGF‐II actions. However, in some cases, IGFBP‐6 is associated with increased cancer cell tumorigenicity, which is unlikely to be due to IGF‐II inhibition. The mechanisms underlying the contradictory actions of IGFBP‐6 remain unclear. We recently generated an IGFBP‐6 mutant that does not bind IGFs (mIGFBP‐6) to address this issue. Although RD rhabdomyosarcoma cells express IGF‐II, we previously showed that mIGFBP‐6 promoted migration through an IGF‐independent, p38‐dependent pathway. We further studied the role of MAP kinases in IGFBP‐6‐induced migration of Rh30 rhabdomyosarcoma cells, which also express IGF‐II. In these cells, mIGFBP‐6 induced chemotaxis rather than chemokinesis. Both wild‐type (wt) and mIGFBP‐6 transiently induced phosphorylation of ERK1/2 and JNK1, but not p38. Inhibition of ERK1/2 phosphorylation completely prevented mIGFBP‐6‐induced ERK1/2 activation and cell migration, whereas a JNK inhibitor partially prevented migration. Interestingly, p38 pathway inhibition completely prevented mIGFBP‐6‐induced ERK1/2 and JNK1 activation and migration despite mIGFBP‐6 not activating p38. Furthermore, blocking the ERK1/2 pathway also inhibited mIGFBP‐6‐induced JNK1 activation. In contrast, IGFBP‐6 had no effect on Akt phosphorylation and an Akt inhibitor had no effect on migration. These results indicate that IGFBP‐6 promotes Rh30 rhabdomyosarcoma chemotaxis in an IGF‐independent manner, and that MAPK signaling pathways and their cross‐talk play an important role in this process. Therefore, besides decreasing Rh30 cell proliferation by inhibiting IGF‐II, IGFBP‐6 promotes their migration via a distinct pathway. Understanding these disparate actions of IGFBP‐6 may lead to the development of novel cancer therapeutics. J. Cell. Physiol. 224: 636–643, 2010. © 2010 Wiley‐Liss, Inc.