Premium
Regulatory factors and cell populations involved in skeletal muscle regeneration
Author(s) -
Ten Broek Roel W.,
Grefte Sander,
Von den Hoff Johannes W.
Publication year - 2010
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.22127
Subject(s) - skeletal muscle , regeneration (biology) , microbiology and biotechnology , multinucleate , biology , myocyte , stem cell , satellite , anatomy , aerospace engineering , engineering
Abstract Skeletal muscle regeneration is a complex process, which is not yet completely understood. Satellite cells, the skeletal muscle stem cells, become activated after trauma, proliferate, and migrate to the site of injury. Depending on the severity of the myotrauma, activated satellite cells form new multinucleated myofibers or fuse to damaged myofibers. The specific microenvironment of the satellite cells, the niche, controls their behavior. The niche contains several components that maintain satellite cells quiescence until they are activated. In addition, a great diversity of stimulatory and inhibitory growth factors such as IGF‐1 and TGF‐β1 regulate their activity. Donor‐derived satellite cells are able to improve muscle regeneration, but their migration through the muscle tissue and across endothelial layers is limited. Less than 1% of their progeny, the myoblasts, survive the first days upon intra‐muscular injection. However, a range of other multipotent muscle‐ and non‐muscle‐derived stem cells are involved in skeletal muscle regeneration. These stem cells can occupy the satellite cell niche and show great potential for the treatment of skeletal muscle injuries and diseases. The aim of this review is to discuss the niche factors, growth factors, and other stem cells, which are involved in skeletal muscle regeneration. Knowledge about the factors regulating satellite cell activity and skeletal muscle regeneration can be used to improve the treatment of muscle injuries and diseases. J. Cell. Physiol. 224:7–16, 2010 © 2010 Wiley‐Liss, Inc.