Premium
Matrix association of latent TGF‐beta binding protein‐2 (LTBP‐2) is dependent on fibrillin‐1
Author(s) -
Vehviläinen Piia,
Hyytiäinen Marko,
KeskiOja Jorma
Publication year - 2009
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.21888
Subject(s) - fibronectin , fibrillin , extracellular matrix , microbiology and biotechnology , transforming growth factor beta , colocalization , biology , transforming growth factor , chemistry
The components of the extracellular matrix (ECM) and their differential expression patterns play important roles in tissue formation. The deposition of latent TGF‐β binding proteins (LTBPs) to the ECM exhibit distinct distribution profiles. We have analyzed here the temporal and spatial ECM association of latent TGF‐β binding protein LTBP‐2 in cultured human embryonic lung fibroblasts. We found that LTBP‐2 was not assembled to the ECM until by confluency of cultures following the deposition of fibronectin (FN) and fibrillin‐1. In 5‐day‐old cultures LTBP‐2 was rapidly secreted from cells and it subsequently associated with the ECM as shown by metabolic labeling and immunoprecipitation. LTBP‐2 colocalized transiently with fibronectin and failed to assemble to the ECM of FN deficient mouse fibroblasts. Analysis of different cultured human cell lines revealed partial colocalization of LTBP‐2 and fibrillin‐1 in the ECM of fibroblasts, MG‐63 osteosarcoma cells and human vascular endothelial cells. Silencing of fibrillin‐1 expression by lentiviral shRNAs profoundly disrupted the deposition of LTBP‐2. Current results suggest that LTBP‐2 is not an element of the provisional ECM of fibroblasts but is more likely a component of more mature ECM and indicate that matrix association of LTBP‐2 depends on a pre‐formed fibrillin‐1 network. J. Cell. Physiol. 221: 586–593, 2009. © 2009 Wiley‐Liss, Inc.