z-logo
Premium
Cl‐IB‐MECA enhances TRAIL‐induced apoptosis via the modulation of NF‐κB signalling pathway in thyroid cancer cells
Author(s) -
Morello Silvana,
Sorrentino Rosalinda,
Porta Amalia,
Forte Giovanni,
Popolo Ada,
Petrella Antonello,
Pinto Aldo
Publication year - 2009
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.21863
Subject(s) - nf κb , apoptosis , signalling , signalling pathways , microbiology and biotechnology , signal transduction , thyroid cancer , cancer research , chemistry , cancer cell , modulation (music) , hedgehog signaling pathway , cancer , thyroid , biology , medicine , endocrinology , biochemistry , physics , acoustics
Apoptosis is an endogenous process that can be a useful anti‐cancer tool. This study aimed to investigate the effect of Cl‐IB‐MECA, adenosine receptor A3 agonist, on TRAIL‐induced apoptosis of thyroid carcinoma cells. Cl‐IB‐MECA enhanced TRAIL‐mediated apoptosis in FRO but not in ARO cells. This effect was correlated to higher expression levels of DR5 on FRO than ARO cells, that instead presented higher levels of decoy receptors, DcR1 and DcR2. To understand the cross‐talk between the effect of Cl‐IB‐MECA and TRAIL, we evaluated the nuclear translocation of p65 and c‐Rel. Since the dependency by NF‐κB, TRAIL promoted the nuclear translocation of both p65 and c‐Rel subunits. However, the addition of Cl‐IB‐MECA led to the predominant translocation of c‐Rel after TRAIL addition. Furthermore, Bcl‐2, cFLIP and pAkt were lower induced than caspase‐3 and ‐9 in FRO cells. To discriminate a specific effect of TRAIL, we used tumour necrosis factor‐alpha (TNF‐α) with Cl‐IB‐MECA. In this case, no synergism was observed. In addition, the effect of Cl‐IB‐MECA was not A3 receptor‐dependent since its antagonists, MRS1191 and FA385, failed to block Cl‐IB‐MECA activity on TRAIL‐treated FRO cells. In conclusion, Cl‐IB‐MECA enhanced TRAIL‐mediated apoptosis via NF‐κB/c‐Rel activation and DR5‐dependent manner. This study may shed light on a potential drug cocktail that may prove useful as anti‐cancer in an in vivo animal model. J. Cell. Physiol. 221: 378–386, 2009. © 2009 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here