Premium
Hypoxia stimulates vesicular ATP release from rat osteoblasts
Author(s) -
Orriss Isabel R.,
Knight Gillian E.,
Utting Jennifer C.,
Taylor Sarah E.B.,
Burnstock Geoffrey,
Arnett Timothy R.
Publication year - 2009
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.21745
Subject(s) - extracellular , microbiology and biotechnology , exocytosis , p2y receptor , osteoblast , osteoclast , purinergic receptor , apyrase , atp hydrolysis , intracellular , chemistry , biology , receptor , biochemistry , secretion , atpase , enzyme , in vitro
Many neuronal and non‐neuronal cell types release ATP in a controlled manner. After release, extracellular ATP (or, following hydrolysis, ADP) acts on cells in a paracrine manner via P2 receptors. Extracellular nucleotides are now thought to play an important role in the regulation of bone cell function. ATP (and ADP), acting via the P2Y 1 receptor, stimulate osteoclast formation and activity, whilst P2Y 2 receptor stimulation by ATP (or UTP) inhibits bone mineralization by osteoblasts. We found that rat calvarial osteoblasts released ATP constitutively, in a differentiation‐dependent manner, with mature, bone‐forming osteoblasts releasing up to sevenfold more ATP than undifferentiated, proliferating cells. The inhibitors of vesicular exocytosis, monensin, and N ‐ethylmaleimide (1–1,000 µM) inhibited basal ATP release by up to 99%. The presence of granular ATP‐filled vesicles within the osteoblast cytoplasm was demonstrated by quinacrine staining. Exposure to hypoxia (2% O 2 ) for up to 3 min increased ATP release from osteoblasts up to 2.5‐fold without affecting cell viability. Peak concentrations of ATP released into culture medium were >1 µM, which equates with concentrations known to exert significant effects on osteoblast and osteoclast function. Monensin and N ‐ethylmaleimide (100 µM) attenuated the hypoxia‐induced ATP release by up to 80%. Depletion of quinacrine‐stained vesicles was also apparent after hypoxic stimulation, indicating that ATP release had taken place. These data suggest that vesicular exocytosis is a key mediator of ATP release from osteoblasts, in biologically significant amounts. Moreover, increased extracellular ATP levels following acute exposure to low O 2 could influence local purinergic signaling and affect the balance between bone formation and bone resorption. J. Cell. Physiol. 220: 155–162, 2009. © 2009 Wiley‐Liss, Inc.