z-logo
Premium
The epidermal growth factor receptor ligands at a glance
Author(s) -
Schneider Marlon R.,
Wolf Eckhard
Publication year - 2009
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.21635
Subject(s) - ectodomain , juxtacrine signalling , autocrine signalling , epidermal growth factor , microbiology and biotechnology , biology , paracrine signalling , transmembrane protein , epidermal growth factor receptor , transmembrane domain , growth factor , receptor , biochemistry
The epidermal growth factor receptor (EGFR) regulates key processes of cell biology, including proliferation, survival, and differentiation during development, tissue homeostasis, and tumorigenesis. Canonical EGFR activation involves the binding of seven peptide growth factors. These ligands are synthesized as transmembrane proteins comprising an N‐terminal extension, the EGF module, a short juxtamembrane stalk, a hydrophobic transmembrane domain, and a carboxy‐terminal fragment. The central structural and functional feature is the EGF module, a sequence containing six cysteines in a conserved spacement which is responsible for binding to the EGFR. While the membrane‐anchored peptide can be biologically active by juxtacrine signaling, in most cases the EGF module is proteolytically cleaved (a process termed ectodomain shedding) to release the soluble growth factor, which may act in an endocrine, paracrine, or autocrine fashion. This review summarizes the structural and functional properties of these fascinating molecules and presents selected examples to illustrate their roles in development, physiology, and pathology. J. Cell. Physiol. 218: 460–466, 2009. © 2008 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here