Premium
Cyclin E in centrosome duplication and reduplication in sea urchin zygotes
Author(s) -
Schnackenberg Bradley J.,
Marzluff William F.,
Sluder Greenfield
Publication year - 2008
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.21531
Subject(s) - centrosome , centrosome cycle , microbiology and biotechnology , biology , mitosis , cell cycle , genetics , cell
When protein synthesis is completely blocked from before fertilization, the sea urchin zygote arrests in first S phase and the paternal centrosome reduplicates multiple times. However, when protein synthesis is blocked starting in prophase of first mitosis, the zygote divides and the blastomeres arrest in a G1‐like state. The centrosome inherited from this mitosis duplicates only once in each blastomere for reasons that are not understood. The late G1 rise in cyclin E/cdk2 kinase activity initiates centrosome duplication in mammalian cells and its activity is needed for centrosome duplication in Xenopus egg extracts. Since the half‐time for cyclin E turnover is normally ∼1 h in sea urchin zygotes, the different behaviors of centrosomes during G1 and S phase arrests could be due to differential losses of cyclin E and its associated kinase activities at these two arrest points. To better understand the mechanisms that limit centrosome duplication, we characterize the levels of cyclin E and its associated kinase activity at the S phase and G1 arrest points. We first demonstrate that cyclin E/cdk2 kinase activity is required for centrosome duplication and reduplication in sea urchin zygotes. Next we find that cyclin E levels and cyclin E/cdk2 kinase activities are both constitutively and equivalently elevated during both the S phase and G1 arrests. This indicates that centrosome duplication during the G1 arrest is limited by a block to reduplication under conditions permissive for duplication. The cytoplasmic conditions of S phase, however, abrogate this block to reduplication. J. Cell. Physiol. 217: 626–631, 2008. © 2008 Wiley‐Liss, Inc.