Premium
Viral vectors for production of recombinant proteins in plants
Author(s) -
Lico Chiara,
Chen Qiang,
Santi Luca
Publication year - 2008
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.21423
Subject(s) - biology , microbiology and biotechnology , recombinant dna , computational biology , viral vector , synthetic biology , heterologous , biochemical engineering , gene , biochemistry , engineering
Global demand for recombinant proteins has steadily accelerated for the last 20 years. These recombinant proteins have a wide range of important applications, including vaccines and therapeutics for human and animal health, industrial enzymes, new materials and components of novel nano‐particles for various applications. The majority of recombinant proteins are produced by traditional biological “factories,” that is, predominantly mammalian and microbial cell cultures along with yeast and insect cells. However, these traditional technologies cannot satisfy the increasing market demand due to prohibitive capital investment requirements. During the last two decades, plants have been under intensive investigation to provide an alternative system for cost‐effective, highly scalable, and safe production of recombinant proteins. Although the genetic engineering of plant viral vectors for heterologous gene expression can be dated back to the early 1980s, recent understanding of plant virology and technical progress in molecular biology have allowed for significant improvements and fine tuning of these vectors. These breakthroughs enable the flourishing of a variety of new viral‐based expression systems and their wide application by academic and industry groups. In this review, we describe the principal plant viral‐based production strategies and the latest plant viral expression systems, with a particular focus on the variety of proteins produced and their applications. We will summarize the recent progress in the downstream processing of plant materials for efficient extraction and purification of recombinant proteins. J. Cell. Physiol. 216: 366–377, 2008. © 2008 Wiley‐Liss, Inc.