Premium
Cytochrome P450 (CYP) 2J2 gene transfection attenuates MMP‐9 via inhibition of NF‐κβ in hyperhomocysteinemia
Author(s) -
Moshal Karni S.,
Zeldin Darryl C.,
Sithu Srinivas D.,
Sen Utpal,
Tyagi Neetu,
Kumar Munish,
Hughes William M.,
Metreveli Naira,
Rosenberger Dorothea S.E.,
Singh Mahavir,
Vacek Thomas P.,
Rodriguez Walter E.,
Ayotunde Adeagbo,
Tyagi Suresh C.
Publication year - 2008
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.21356
Subject(s) - epoxygenase , transfection , chemistry , cytochrome p450 , microbiology and biotechnology , biology , medicine , biochemistry , enzyme , gene
Hyperhomocysteinemia (HHcy) is associated with atherosclerotic events involving the modulation of arachidonic acid (AA) metabolism and the activation of matrix metalloproteinase‐9 (MMP‐9). Cytochrome P450 (CYP) epoxygenase‐2J2 (CYP2J2) is abundant in the heart endothelium, and its AA metabolites epoxyeicosatrienoic acids (EETs) mitigates inflammation through NF‐κβ. However, the underlying molecular mechanisms for MMP‐9 regulation by CYP2J2 in HHcy remain obscure. We sought to determine the molecular mechanisms by which P450 epoxygenase gene transfection or EETs supplementation attenuate homocysteine (Hcy)‐induced MMP‐9 activation. CYP2J2 was over‐expressed in mouse aortic endothelial cells (MAECs) by transfection with the pcDNA3.1/CYP2J2 vector. The effects of P450 epoxygenase transfection or exogenous supplementation of EETs on NF‐κβ‐mediated MMP‐9 regulation were evaluated using Western blot, in‐gel gelatin zymography, electromobility shift assay, immunocytochemistry. The result suggested that Hcy downregulated CYP2J2 protein expression and dephosphorylated PI3K‐dependent AKT signal. Hcy induced the nuclear translocation of NF‐κβ via downregulation of IKβα (endogenous cytoplasmic inhibitor of NF‐κβ). Hcy induced MMP‐9 activation by increasing NF‐κβ–DNA binding. Moreover, P450 epoxygenase transfection or exogenous addition of 8,9‐EET phosphorylated the AKT and attenuated Hcy‐induced MMP‐9 activation. This occurred, in part, by the inhibition of NF‐κβ nuclear translocation, NF‐κβ–DNA binding and activation of IKβα. The study unequivocally suggested the pivotal role of EETs in the modulation of Hcy/MMP‐9 signal. J. Cell. Physiol. 215: 771–781, 2008. © 2008 Wiley‐Liss, Inc.