z-logo
Premium
Fas ligand expression in TM4 sertoli cells is enhanced by estradiol “in situ” production
Author(s) -
Catalano Stefania,
Rizza Pietro,
Gu Guowei,
Barone Ines,
Giordano Cinzia,
Marsico Stefania,
Casaburi Ivan,
Middea Emilia,
Lanzino Marilena,
Pellegrino Michele,
Andò Sebastiano
Publication year - 2007
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.20952
Subject(s) - fas ligand , sertoli cell , aromatase , biology , chromatin immunoprecipitation , gene expression , androgen , microbiology and biotechnology , endocrinology , medicine , apoptosis , spermatogenesis , gene , promoter , hormone , biochemistry , genetics , cancer , programmed cell death , breast cancer
The testis is an immunologically privileged site of the body where Sertoli cells work on to favor local immune tolerance by testicular autoantigens segregation and immunosuppressive factors secretion. Fas/Fas Ligand (FasL) system, expressed prevalently in Sertoli cells, has been considered to be one of the central mechanisms in testis immunological homeostasis. In different cell lines it has been reported that the proapoptotic protein FasL is regulated by 17‐β estradiol (E2). Thus, using as experimental model mouse Sertoli cells TM4, which conserve a large spectrum of functional features present in native Sertoli cells, like aromatase activity, we investigated if estradiol “in situ” production may influence FasL expression. Our results demonstrate that an aromatizable androgen like androst‐4‐ene‐3,17‐dione (Δ4) enhanced FasL mRNA, protein content and promoter activity in TM4 cells. The treatment with N 6 ,2′‐ O ‐dibutyryladenosine‐3′‐5′‐cyclic monophosphate [(Bu) 2 cAMP] (simulating FSH action), that is well known to stimulate aromatase activity in Sertoli cells, amplified Δ4 induced FasL expression. Functional studies of mutagenesis, electrophoretic mobility shift (EMSA) and chromatin immunoprecipitation (ChIP) assays revealed that the Sp‐1 motif on FasL promoter was required for E2 enhanced FasL expression in TM4 cells. These data let us to recruit FasL among those genes whose expression is up‐regulated by E2 through a direct interaction of ERα with Sp‐1 protein. Finally, evidence that an aromatizable androgen is able to increase FasL expression suggests that E2 production by aromatase activity may contribute to maintain the immunoprivilege status of Sertoli cells. J. Cell. Physiol. 211: 448–456, 2007. © 2006 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here