z-logo
Premium
Expression and activity of C/EBPβ and δ are upregulated by dexamethasone in skeletal muscle
Author(s) -
Yang Hongmei,
Mammen Joshua,
Wei Wei,
Menconi Michael,
Evenson Amy,
Fareed Moin,
Petkova Victoria,
Hasselgren PerOlof
Publication year - 2005
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.20278
Subject(s) - myogenesis , skeletal muscle , electrophoretic mobility shift assay , dexamethasone , downregulation and upregulation , microbiology and biotechnology , ccaat enhancer binding proteins , luciferase , gene expression , medicine , transfection , chemistry , endocrinology , myocyte , reporter gene , transcription factor , biology , gene , dna binding protein , biochemistry
The influence of glucocorticoids on the expression and activity of the transcription factors CCAAT/enhancer binding protein (C/EBP)β and δ in skeletal muscle was examined by treating rats or cultured L6 myotubes with dexamethasone. Treatment of rats with 10 mg/kg of dexamethasone resulted in increased C/EBPβ and δ DNA binding activity in the extensor digitorum longus muscle as determined by electrophoretic mobility shift assay (EMSA) and supershift analysis. A similar response was noticed in dexamethasone‐treated myotubes. In other experiments, myocytes were transfected with a plasmid containing a promoter construct consisting of multiple C/EBP binding elements upstream of a luciferase reporter gene. Treatment of these cells with dexamethasone resulted in a fourfold increase in luciferase activity, suggesting that glucocorticoids increase C/EBP‐dependent gene activation in muscle cells. In addition, dexamethasone upregulated the protein and gene expression of C/EBPβ and δ in the myotubes in a time‐ and dose‐dependent fashion as determined by Western blotting and real‐time PCR, respectively. The results suggest that glucocorticoids increase C/EBPβ and δ activity and expression through a direct effect in skeletal muscle. © 2005 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom