z-logo
Premium
Modulation of cardiac myocyte phenotype in vitro by the composition and orientation of the extracellular matrix
Author(s) -
Simpson D. G.,
Terracio L.,
Terracio M.,
Price R. L.,
Turner D. C.,
Borg T. K.
Publication year - 1994
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.1041610112
Subject(s) - extracellular matrix , myocyte , phenotype , cardiac myocyte , in vitro , microbiology and biotechnology , extracellular , composition (language) , matrix (chemical analysis) , biology , modulation (music) , chemistry , biophysics , biochemistry , physics , gene , linguistics , philosophy , acoustics , chromatography
Cellular phenotype is the result of a dynamic interaction between a cell's intrinsic genetic program and the morphogenetic signals that serve to modulate the extent to which that program is expressed. In the present study we have examined how morphogenetic information might be stored in the extracellular matrix (ECM) and communicated to the neonatal heart cell (NHC) by the cardiac α 1 β 1 integrin molecule. A thin film of type I collagen (T1C) was prepared with a defined orientation. This was achieved by applying T1C to the peripheral edge of a 100 mm culture dish. The T1C was then drawn across the surface of the dish in a continuous stroke with a sterile cell scraper and allowed to polymerize. When NHCs were cultured on this substrate, they spread, as a population, along a common axis in parallel with the gel lattice and expressed an in vivo‐like phenotype. Individual NHCs displayed an elongated, rod‐like shape and disclosed parallel arrays of myofibrils. These phenotypic characteristics were maintained for at least 4 weeks in primary culture. The evolution of this tissue‐like organizational pattern was dependant upon specific interactions between the NHCs and the collagen‐based matrix that were mediated by the cardiac α 1 β 1 integrin complex. This conclusion was supported by a variety of expermental results. Altering the tertiary structure of the matrix or blocking the extracellular domains of either the cardiac α 1 , or β 1 integrin chain inhibited the expression of the tissue‐like pattern of organization. Neither cell‐to‐cell contact or contractile function were necessary to induce the formation of the rod‐like cell shape. However, beating activity was necessary for the assembly of a well‐differentiated myofibrillar apparatus. These data suggest that the cardiac α 1 β 1 integrin complex serves to detect and transduce phenotypic information stored within the tertiary structure of the surrounding matrix. © 1994 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here