z-logo
Premium
Multiple sequential periods of DNA synthesis and quiescence in primary hepatocyte cultures maintained on the DMSO‐EGF on/off protocol
Author(s) -
Chan Krammie,
Kost Diane P.,
Michalopoulos George
Publication year - 1989
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.1041410317
Subject(s) - dna synthesis , hepatocyte , dimethyl sulfoxide , epidermal growth factor , biology , in vitro , phenobarbital , microbiology and biotechnology , dna , cell culture , biochemistry , chemistry , endocrinology , genetics , organic chemistry
Repeated periods of DNA synthesis activity (each period consisting of two to three cycles) separated by intervals of quiescence in primary rat hepatocytes can be stimulated by sequential addition and removal of 2% dimethyl sulfoxide (DMSO) in the presence of epidermal growth factor (EGF). Hepatocytes can be kept in nonproliferating cultures for 7 days in media supplemented with 2% DMSO and EGF. If DMSO is removed while EGF is maintained, rat and human hepatocytes enter a 3 to 4 day period of DNA synthesis that declines rapidly by days 4 and 5. If DMSO is reintroduced into cultures at that point, kept on for 3 more days and removed again, hepatocytes reenter into proliferation with another self‐limited response of 3 to 4 days. Similar phenomena can seen with hepatocytes maintained in the presence of 3 mM phenobarbital. These protocols demonstrate that loss of responsiveness to mitogens in primary hepatocyte cultures is not an irreversible process. They also raise the possibility that signals for termination of DNA synthesis in hepatocytes emanate from hepatocytes themselves. These studies also suggest for the first time the possibility of designing in vitro systems that will allow clonal expansion of differential hepatocytes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here