z-logo
Premium
Butyric acid causes morphological changes in cultured chondrocytes through alterations in the extracellular matrix
Author(s) -
Bretton Randolph H.,
Pennypacker John P.
Publication year - 1989
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.1041380126
Subject(s) - fibronectin , chondroitin sulfate proteoglycan , extracellular matrix , microbiology and biotechnology , butyric acid , proteoglycan , butyrate , matrix (chemical analysis) , cell culture , chemistry , cell , biology , biochemistry , genetics , chromatography , fermentation
Abstract Butyric acid induces characteristic changes in the morphology of chick embryo chondrocytes. Chick embryo chondrocytes when cultured in the absence of butyrate exhibit a spherical morphology and synthesize cartilage‐specific chondroitin sulfate proteoglycan (CSPG). When these cultures are initiated and maintained in the presence of butyric acid, chondrocytes exhibit a mesenchymal morphology, a 90% reduction in the synthesis of CSPG, and a 75% reduction in DNA synthesis. The reduced synthesis of CSPG and DNA was shown not to be dependent on the morphological change. Chondrocytes require CSPG in order to express a spherical morphology, since including chondroitinase ABC in the culture media caused the cells to spread. In addition, the treatment of chondrocytes with purified CSPG prior to culture in media containing butyric acid resulted in spherical cells. The butyrate‐induced spreading was shown to require either serum or fibronectin and could be prevented with antiserum against chick cell‐surface fibronectin (cFn). Cell‐surface fibronectin, which was present on both spherical and flattened chondrocytes, organized into fibrils beneath cells which spread. Increased fibronectin synthesis was not responsible for the butyrate‐induced morphological change. From this evidence, it is concluded that the mechanism by which butyrate alters the morphology of these cells in culture involves inhibiting CSPG synthesis, thus preventing CSPG accumulation in the extracellular matrix (ECM). The absence of CSPG in the ECM allows fibronectin to mediate spreading of chondrocytes in culture.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here