Premium
Sodium 22 + washout from cultured rat cells
Author(s) -
Kino Minoru,
Nakamura Akitoshi,
Hopp Laszlo,
Kuriyama Satoru,
Aviv Abraham
Publication year - 1986
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.1041290102
Subject(s) - washout , ouabain , chemistry , biophysics , sodium , biology , medicine , organic chemistry
Abstract The washout of Na + isotopes from tissues and cells is quite complex and not well defined. To further gain insight into this process, we have studied 22 Na + washout from cultured Wistar rat skin fibroblasts and vascular smooth muscle cells (VSMCs). In these preparations, 22 Na + washout is described by a general three‐exponential function. The exponential factor of the fastest component (k 1 ) and the initial exchange rate constant (k i e ) of cultured fibroblasts decrease in magnitude in response to incubation in K + ‐deficient medium or in the presence of ouabain and increase in magnitude when the cells are incubated in a Ca ++ ‐deficient medium. As the magnitude of the k i e declines (in the presence of ouabain) to the level of the exponential factor of the middle component (k 2 ), 22 Na + washout is adequately described by a twoexponential function. When the k i e is further diminished (in the presence of both ouabain and phloretin) to the range of the exponential factor of the slowest component (k 3 ), the washout of 22 Na + is apparently monoexponential. Calculations of the cellular Na + concentrations, based on the 22 Na + activity in the cells at the initiation of the washout experiments, and the medium specific activity agree with atomic absorption spectrometry measurements of the cellular concentration of this ion. Thus, all three components of 22 Na + washout from cultured rat cells are of cellular origin. Using the exponential parameters, compartmental analyses of two models (in parallel and in series) with three cellular Na + pools were performed. The results indicate that, independent of the model chosen, the relative size of the largest Na + pool is 92–93% in fibroblasts and approximately 96% in VSMCs. This pool is most likely to represent the cytosol.