z-logo
Premium
Use of mutant fibroblasts in the analysis of the regulation of cholesterol metabolism in human cells
Author(s) -
Brown M. S.,
Brannan P. G.,
Bohmfalk H. A.,
Brunschede G. Y.,
Dana S. E.,
Helgeson J.,
Goldstein J. L.
Publication year - 1975
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.1040850409
Subject(s) - ldl receptor , familial hypercholesterolemia , cholesterol , reductase , receptor , mutant , biology , hmg coa reductase , metabolism , low density lipoprotein , heterozygote advantage , extracellular , endocrinology , medicine , biochemistry , lipoprotein , enzyme , gene , allele
Analysis of mutant human fibroblasts deficient in a cell surface receptor for low density lipoproteins (LDL) has led to the delineation of an important, hitherto unrecognized, regulatory process for cholesterol metabolism. In normal cells, binding of LDL to this receptor regulates cholesterol metabolism by two mechanisms: (a) suppression of cholesterol synthesis and (b) facilitation of the rate of proteolytic degradation of the lipoprotein. In cells from homozygotes with the autosomal dominant disorder Familial Hypercholesterolemia, a nearly total reduction in LDL receptors results in two secondary abnormalities: (a) overproduction of cholesterol due to an inability of LDL to suppress the activity of 3‐hydroxy‐3‐methylglutaryl coenzyme A reductase, the rate‐controlling enzyme in cholesterol biosynthesis, and (b) impairment in the rate of proteolytic degradation of LDL. Cells from heterozygotes possess about 50 per cent of the normal number of LDL receptors; this leads to a concentrationdependent defect in regulation, so that attainment of rates of cholesterol synthesis and LDL degradation equal to that in normal cells requires a two to three‐fold higher concentration of extracellular LDL in the heterozygote. The identification of this genetic regulatory defect in fibroblasts of heterozygotes with Familial Hypercholesterolemia makes available an in vitro system for studying the molecular mechanism by which a dominant mutation affects gene expression in mammalian cells.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here