Open Access
Development, validation, and clinical application of an FIA‐MS/MS method for the quantification of lysophosphatidylcholines in dried blood spots
Author(s) -
Yue Xiaofei,
Liu Wei,
Liu Ying,
Shen Min,
Zhai Yanhong,
Ma Zhijun,
Cao Zheng
Publication year - 2022
Publication title -
journal of clinical laboratory analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.536
H-Index - 50
eISSN - 1098-2825
pISSN - 0887-8013
DOI - 10.1002/jcla.24099
Subject(s) - chromatography , analyte , triple quadrupole mass spectrometer , tandem mass spectrometry , chemistry , spots , selected reaction monitoring , dried blood , mass spectrometry , electrospray ionization , lysophosphatidylcholine , dried blood spot , phospholipid , biochemistry , membrane , phosphatidylcholine
Abstract Background Lysophosphatidylcholine (LPC) plays pivotal roles in several physiological processes and their disturbances are closely associated with various disorders. In this study, we described the development and validation of a reliable and simple flow injection analysis–tandem mass spectrometry (FIA‐MS/MS)‐based method using dried blood spots (DBS) for quantification of four individual LPC (C20:0, C22:0, C24:0, and C26:0). Methods Lysophosphatidylcholines were extracted from 3.2 mm DBS with 85% methanol containing 60 ng/ml internal standard using a rapid (30 min) and simple procedure. The analytes and the internal standard were directly measured by triple quadrupole tandem mass spectrometry in multiple reactions monitoring mode via positive electrospray ionization. Results Method validation results showed good linearity ranging from 50 to 2000 ng/ml for each LPC. Intra‐ and inter‐day precision and accuracy were within the acceptable limits at four quality control levels. Recovery was from 70.5% to 107.0%, and all analytes in DBS were stable under assay conditions (24 h at room temperature and 72 h in autosampler). The validated method was successfully applied to assessment of C20:0‐C26:0LPCs in 1900 Chinese neonates. C26:0‐LPC levels in this study were consistent with previously published values. Conclusion We propose a simple FIA‐MS/MS method for analyzing C20:0‐C26:0LPCs in DBS, which can be used for first‐tier screening.