
Identification of lncRNA‐associated competing endogenous RNA networks for occurrence and prognosis of gastric carcinoma
Author(s) -
Ye Lianmin,
Jin Wumin
Publication year - 2021
Publication title -
journal of clinical laboratory analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.536
H-Index - 50
eISSN - 1098-2825
pISSN - 0887-8013
DOI - 10.1002/jcla.24028
Subject(s) - competing endogenous rna , biology , long non coding rna , microrna , computational biology , rna , gene , genetics
Background Gastric cancer (GC) is one of the common digestive malignancies worldwide and causes a severe public health issue. So far, the underlying mechanisms of GC are largely unclear. Thus, we aim to identify the long non‐coding RNA (lncRNA)‐associated competing endogenous RNA (ceRNA) for GC. Methods TCGA database was downloaded and used for the identification of differentially expressed (DE) lncRNAs, miRNAs, and mRNAs, respectively. Then, the ceRNA network was constructed via multiple online datasets and approaches. In addition, various in vitro assays were carried out to validate the effect of certain hub lncRNAs. Results We constructed a ceRNA network, including 76 lncRNAs, 18 miRNAs, and 159 mRNAs, which involved multiple critical pathways. Next, univariate and multivariate analysis demonstrated 11 lncRNAs, including LINC02731, MIR99AHG, INHBA‐AS1, CCDC144NL‐AS1, VLDLR‐AS1, LIFR‐AS1, A2M‐AS1, LINC01537, and LINC00702, and were associated with OS, and nine of those lncRNAs were considered as hub lncRNAs involved in the sub‐ceRNA network. The in vitro assay indicated two lncRNAs, INHBA‐AS1 and CCDC144NL‐AS1, which were positively related to the GC aggressive features, including proliferation, invasion, and migration. Conclusions We identified nine hub lncRNAs and the associated ceRNA network related to the prognosis of GC, and then validated two out of them as promising oncogenes in GC.