Open Access
Assessment of serum phenylalanine and tyrosine isomers in patients with ST‐segment elevation vs non‐ST‐segment elevation myocardial infarction
Author(s) -
AlSadoon Ied,
Wittmann István,
Kun Szilard,
Ahmann Mercédesz,
Konyi Attila,
Verzár Zsófia
Publication year - 2021
Publication title -
journal of clinical laboratory analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.536
H-Index - 50
eISSN - 1098-2825
pISSN - 0887-8013
DOI - 10.1002/jcla.23613
Subject(s) - myocardial infarction , culprit , medicine , lesion , cardiology , percutaneous coronary intervention , st segment , oxidative stress , aortic root , aorta , surgery
Abstract Background Under conditions of oxidative stress, hydroxyl radicals can oxidize phenylalanine (Phe) into various tyrosine (Tyr) isomers (meta‐, ortho‐, and para‐tyrosine; m‐, o‐, and p‐Tyr), depending on the location of the hydroxyl group on the oxidized benzyl ring. This study aimed to compare patients with ST‐segment elevation myocardial infarction (STEMI) and non‐STEMI (NSTEMI) and the serum levels of Phe and Tyr isomers at the aortic root and distal to the culprit lesion in both groups. Methods Forty‐four patients participated in the study: 23 with STEMI and 21 with NSTEMI. Arterial blood samples were taken from the aortic root through a guiding catheter and from the culprit vessel segment distal from the primary lesion with an aspiration catheter, during the percutaneous coronary intervention. Serum levels of Phe, p‐Tyr, m‐Tyr, and o‐Tyr were determined using reverse‐phase high‐performance liquid chromatography. Results Serum levels of Phe were significantly higher distal to the culprit lesion compared to the aortic root in patients with STEMI. Serum p‐Tyr/Phe and m‐Tyr/Phe concentration ratios were both lower distal to the culprit lesion than at the aortic root in patients with STEMI. There were no statistically significant differences with respect to changes in serum Phe and Tyr isomers distal to the culprit lesion compared to the aortic root in patients with NSTEMI. Conclusion Our data suggest that changes in serum levels of different Tyr isomers can mediate the effects of oxidative stress during myocardial infarction.