z-logo
Premium
Flag‐transitive 2‐ ( v , 4 , λ ) designs of product type
Author(s) -
Zhan Xiaoqin,
Zhou Shenglin,
Chen Guangzu
Publication year - 2018
Publication title -
journal of combinatorial designs
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.618
H-Index - 34
eISSN - 1520-6610
pISSN - 1063-8539
DOI - 10.1002/jcd.21605
Subject(s) - mathematics , flag (linear algebra) , combinatorics , transitive relation , affine transformation , type (biology) , product (mathematics) , automorphism group , automorphism , simple (philosophy) , discrete mathematics , algebra over a field , pure mathematics , geometry , ecology , biology , philosophy , epistemology
In this paper, we prove that if a 2‐ ( v , 4 , λ ) design D admits a flag‐transitive automorphism group G , then G is of affine, almost simple type, or product type. Furthermore, we prove that if G is product type then D is either a 2‐(25, 4, 12) design or a 2‐(25, 4, 18) design withSoc ( G ) = A 5 × A 5 .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom