z-logo
Premium
Flag‐Transitive Point‐Primitive Automorphism Groups of Nonsymmetric 2 − ( v , k , 2 ) Designs
Author(s) -
Liang Hongxue,
Zhou Shenglin
Publication year - 2016
Publication title -
journal of combinatorial designs
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.618
H-Index - 34
eISSN - 1520-6610
pISSN - 1063-8539
DOI - 10.1002/jcd.21516
Subject(s) - mathematics , transitive relation , flag (linear algebra) , socle , automorphism , automorphism group , combinatorics , primitive permutation group , affine transformation , outer automorphism group , simple (philosophy) , inner automorphism , group (periodic table) , simple group , point (geometry) , discrete mathematics , pure mathematics , symmetric group , algebra over a field , geometry , chemistry , cyclic permutation , paleontology , philosophy , inversion (geology) , organic chemistry , epistemology , structural basin , biology
In this article, we show that if D is a nontrivial nonsymmetric 2 − ( v , k , 2 ) design admitting a flag‐transitive point‐primitive automorphism group G , then G must be an affine or almost simple group. Moreover, if the socle of G is sporadic, then D is the unique 2 − (176, 8, 2) design with G = H S , the Higman–Sims simple group.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom