Premium
Generalized Quadrangles and Transitive Pseudo‐Hyperovals
Author(s) -
Bamberg John,
Glasby S. P.,
Popiel Tomasz,
Praeger Cheryl E.
Publication year - 2016
Publication title -
journal of combinatorial designs
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.618
H-Index - 34
eISSN - 1520-6610
pISSN - 1063-8539
DOI - 10.1002/jcd.21411
Subject(s) - mathematics , combinatorics , transitive relation , linear subspace , abelian group , flag (linear algebra) , automorphism , automorphism group , projective space , dimension (graph theory) , pure mathematics , algebra over a field , projective test
A pseudo‐hyperoval of a projective spacePG ( 3 n − 1 , q ) , q even, is a set ofq n + 2 subspaces of dimension n − 1 such that any three span the whole space. We prove that a pseudo‐hyperoval with an irreducible transitive stabilizer is elementary. We then deduce from this result a classification of the thick generalized quadrangles Q that admit a point‐primitive, line‐transitive automorphism group with a point‐regular abelian normal subgroup. Specifically, we show that Q is flag‐transitive and isomorphic toT 2 * ( H ) , where H is either the regular hyperoval of PG(2, 4) or the Lunelli–Sce hyperoval of PG(2, 16).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom