z-logo
Premium
Classification of Graeco‐Latin Cubes
Author(s) -
Kokkala Janne I.,
Östergård Patric R. J.
Publication year - 2015
Publication title -
journal of combinatorial designs
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.618
H-Index - 34
eISSN - 1520-6610
pISSN - 1063-8539
DOI - 10.1002/jcd.21400
Subject(s) - mathematics , combinatorics , equivalence (formal languages) , minimum distance , code (set theory) , separable space , order (exchange) , discrete mathematics , latin square , computer science , mathematical analysis , set (abstract data type) , finance , economics , programming language , rumen , chemistry , food science , fermentation
A q ‐ary code of length n , size M , and minimum distance d is called an( n , M , d ) q code. An( n , q k , d ) q code with d = n − k + 1 is said to be maximum distance separable (MDS). Here one‐error‐correcting ( d = 3 ) MDS codes are classified for small alphabets. In particular, it is shown that there are unique (5, 5 3 , 3) 5 and (5, 7 3 , 3) 7 codes and 12 , 484 equivalence classes of (5, 8 3 , 3) 8 codes. The( 5 , q 3 , 3 ) q codes are equivalent to certain pairs of mutually orthogonal Latin cubes of order q , called Graeco‐Latin cubes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom