Premium
On the Hamilton‐Waterloo Problem for Bipartite 2‐Factors
Author(s) -
Bryant Darryn,
Danziger Peter,
Dean Matthew
Publication year - 2012
Publication title -
journal of combinatorial designs
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.618
H-Index - 34
eISSN - 1520-6610
pISSN - 1063-8539
DOI - 10.1002/jcd.21312
Subject(s) - combinatorics , mathematics , bipartite graph , complete bipartite graph , hamiltonian path , graph , discrete mathematics
Given two 2‐regular graphs F 1 and F 2 , both of order n , the Hamilton‐Waterloo Problem for F 1 and F 2 asks for a factorization of the complete graph K n into α 1 copies of F 1 , α 2 copies of F 2 , and a 1‐factor if n is even, for all nonnegative integers α 1 and α 2 satisfyingα 1 + α 2 = ⌊ n − 1 2 ⌋ . We settle the Hamilton‐Waterloo Problem for all bipartite 2‐regular graphs F 1 and F 2 where F 1 can be obtained from F 2 by replacing each cycle with a bipartite 2‐regular graph of the same order.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom