z-logo
Premium
Simple Signed Steiner Triple Systems
Author(s) -
Ghorbani E.,
Khosrovshahi G. B.
Publication year - 2012
Publication title -
journal of combinatorial designs
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.618
H-Index - 34
eISSN - 1520-6610
pISSN - 1063-8539
DOI - 10.1002/jcd.21297
Subject(s) - mathematics , combinatorics , steiner system , simple (philosophy) , partition (number theory) , set (abstract data type) , discrete mathematics , computer science , philosophy , epistemology , programming language
Let X be a v ‐set, B be a set of 3‐subsets (triples) of X , andB + ∪ B −be a partition of B with|B − | = s . The pair ( X , B ) is called a simple signed Steiner triple system, denoted by ST ( v , s ) , if the number of occurrences of every 2‐subset of X in triples B ∈ B +is one more than the number of occurrences in triples B ∈ B − . In this paper, we prove that ST ( v , s ) exists if and only if v ≡ 1 , 3( mod 6 ) , v ≠ 7 , and s ∈ { 0 , 1 , . . . , s v − 6 , s v − 4 , s v } , wheres v = v ( v − 1 ) ( v − 3 ) / 12 and for v = 7 , s ∈ { 0 , 2 , 3 , 5 , 6 , 8 , 14 } . © 2012 Wiley Periodicals, Inc. J. Combin. Designs 20: 332–343, 2012

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom