z-logo
Premium
Latin bitrades, dissections of equilateral triangles, and abelian groups
Author(s) -
Drápal Aleš,
Hämäläinen Carlo,
Kala Vítězslav
Publication year - 2010
Publication title -
journal of combinatorial designs
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.618
H-Index - 34
eISSN - 1520-6610
pISSN - 1063-8539
DOI - 10.1002/jcd.20237
Subject(s) - equilateral triangle , combinatorics , abelian group , mathematics , bar (unit) , group (periodic table) , latin square , generating set of a group , physics , geometry , chemistry , quantum mechanics , meteorology , rumen , food science , fermentation
Let T =( T * , T ▵ ) be a spherical latin bitrade. With each a =( a 1 , a 2 , a 3 )∈ T * associate a set of linear equations Eq ( T, a ) of the form b 1 + b 2 = b 3 , where b =( b 1 , b 2 , b 3 ) runs through T * \{ a }. Assume a 1 =0= a 2 and a 3 =1. Then Eq ( T,a ) has in rational numbers a unique solution \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document} $b_{i}=\bar{b}_{i}$\end{document} . Suppose that \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document} $\bar{b}_{i}\not= \bar{c}_{i}$\end{document} for all b, c ∈ T * such that \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document} $\bar{b}_{i}\not= \bar{c}_{i}$\end{document} and i ∈{1, 2, 3}. We prove that then T ▵ can be interpreted as a dissection of an equilateral triangle. We also consider group modifications of latin bitrades and show that the methods for generating the dissections can be used for a proof that T * can be embedded into the operational table of a finite abelian group, for every spherical latin bitrade T . © 2009 Wiley Periodicals, Inc. J Combin Designs 18: 1–24, 2010

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom