z-logo
Premium
On a question of Sós about 3‐uniform friendship hypergraphs
Author(s) -
Hartke Stephen G.,
Vandenbussche Jennifer
Publication year - 2008
Publication title -
journal of combinatorial designs
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.618
H-Index - 34
eISSN - 1520-6610
pISSN - 1063-8539
DOI - 10.1002/jcd.20183
Subject(s) - friendship , combinatorics , mathematics , vertex (graph theory) , property (philosophy) , integer (computer science) , discrete mathematics , graph , hypergraph , computer science , social psychology , psychology , philosophy , epistemology , programming language
The well‐known Friendship Theorem states that if G is a graph in which every pair of vertices has exactly one common neighbor, then G has a single vertex joined to all others (a “universal friend”). V. Sós defined an analogous friendship property for 3‐uniform hypergraphs, and gave a construction satisfying the friendship property that has a universal friend. We present new 3‐uniform hypergraphs on 8, 16, and 32 vertices that satisfy the friendship property without containing a universal friend. We also prove that if n  ≤ 10 and n  ≠ 8, then there are no friendship hypergraphs on n vertices without a universal friend. These results were obtained by computer search using integer programming. © 2008 Wiley Periodicals, Inc. J Combin Designs 16: 253–261, 2008

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom