z-logo
Premium
Quasi‐symmetric designs with fixed difference of block intersection numbers
Author(s) -
Pawale Rajendra M.
Publication year - 2007
Publication title -
journal of combinatorial designs
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.618
H-Index - 34
eISSN - 1520-6610
pISSN - 1063-8539
DOI - 10.1002/jcd.20106
Subject(s) - mathematics , combinatorics , intersection (aeronautics) , zero (linguistics) , complement (music) , block (permutation group theory) , discrete mathematics , philosophy , linguistics , biochemistry , chemistry , complementation , engineering , gene , phenotype , aerospace engineering
The following results for proper quasi‐symmetric designs with non‐zero intersection numbers x , y and λ > 1 are proved. (1) Let D be a quasi‐symmetric design with z  =  y  −  x and v  ≥ 2 k . If x  ≥ 1 +  z  +  z 3 then λ <  x  + 1 +  z  +  z 3 . (2) Let D be a quasi‐symmetric design with intersection numbers x , y and y  −  x  = 1. Then D is a design with parameters v  = (1 +  m ) (2 +  m )/2, b  = (2 +  m ) (3 +  m )/2, r  =  m  + 3, k  =  m  + 1, λ = 2, x  = 1, y  = 2 and m  = 2,3,… or complement of one of these design or D is a design with parameters v  = 5, b  = 10, r  = 6, k  = 3, λ = 3, and x  = 1, y  = 2. (3) Let D be a triangle free quasi‐symmetric design with z  =  y  −  x and v  ≥ 2 k , then x  ≤  z  +  z 2 . (4) For fixed z  ≥ 1 there exist finitely many triangle free quasi‐symmetric designs non‐zero intersection numbers x , y  =  x  +  z . (5) There do not exist triangle free quasi‐symmetric designs with non‐zero intersection numbers x , y  =  x  + 2. © 2006 Wiley Periodicals, Inc. J Combin Designs 15: 49–60, 2007

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom