z-logo
Premium
An improved product construction of rotational Steiner quadruple systems
Author(s) -
Ji L.,
Zhu L.
Publication year - 2002
Publication title -
journal of combinatorial designs
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.618
H-Index - 34
eISSN - 1520-6610
pISSN - 1063-8539
DOI - 10.1002/jcd.10025
Subject(s) - mathematics , combinatorics , product (mathematics) , code (set theory) , order (exchange) , steiner system , discrete mathematics , geometry , computer science , set (abstract data type) , finance , economics , programming language
An improved product construction is presented for rotational Steiner quadruple systems. Direct constructions are also provided for small orders. It is known that the existence of a rotational Steiner quadruple system of order υ+1 implies the existence of an optimal optical orthogonal code of length υ with weight four and index two. New infinite families of orders are also obtained for both rotational Steiner quadruple systems and optimal optical orthogonal codes. © 2002 Wiley Periodicals, Inc. J Combin Designs 10: 433–443, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jcd.10025

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom