z-logo
Premium
N‐Inversion in N‐phenyloxaziridine: substituent and solvent effects via density functional theory
Author(s) -
Jalali Hamideh,
AliAsgari Safa,
Hosseini Seyyed Javad,
Izadi Nia Jafar
Publication year - 2019
Publication title -
journal of the chinese chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.329
H-Index - 45
eISSN - 2192-6549
pISSN - 0009-4536
DOI - 10.1002/jccs.201800170
Subject(s) - chemistry , substituent , natural bond orbital , dichloromethane , moiety , polarizable continuum model , density functional theory , ring flip , computational chemistry , molecule , solvent , medicinal chemistry , ring (chemistry) , solvent effects , stereochemistry , organic chemistry
In this work, using density functional theory, the kinetic effects of the substitution of a t‐butyl group and\or the incorporation of an oxygen atom, and both, at the aziridine ring moiety were investigated for N‐inversion in N‐phenylaziridine. Then, for N‐inversion in 3‐t‐butyl‐N‐phenyloxaziridine, the kinetic Hammett substituent effects were studied using the different para‐substituted groups on the N‐phenyl ring moiety. The natural bond orbital (NBO) study was the last case in this work. The calculations were performed in the gas phase and solution (in carbon tetrachloride and dichloromethane). The incorporation of an oxygen atom in the aziridine ring strongly weakens the N‐inversion process. In addition, while both t‐butyl substituent and solvent slightly reinforce the N‐inversion of N‐phenyloxaziridine, in N‐phenylaziridine, they decrease the N‐inversion rate to some extent. In both phases, more pronounced in solution and especially in dichloromethane, and in agreement with the NBO results, the electron‐withdrawing groups on para position of the N‐phenyl ring strongly increase the rate of N‐inversion of 3‐t‐butyl‐N‐phenyloxaziridine molecule.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here