Premium
Theoretical Study on Hydrogen Bonding of Mono‐ and Dihydrated Complexes of 7‐(3′‐Pyridyl)indole in Excited States
Author(s) -
Yang DaPeng,
Yang YongGang,
Liu YuFang
Publication year - 2013
Publication title -
journal of the chinese chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.329
H-Index - 45
eISSN - 2192-6549
pISSN - 0009-4536
DOI - 10.1002/jccs.201300051
Subject(s) - chemistry , hydrogen bond , intermolecular force , excited state , crystallography , indole test , photochemistry , fluorescence , computational chemistry , molecule , stereochemistry , atomic physics , organic chemistry , quantum mechanics , physics
Abstract The intermolecular hydrogen bonds of mono‐ and dihydrated complexes of 7‐(3′‐Pyridyl)indole (7‐3′PI) have been investigated using the time‐dependent density functional theory (TD‐DFT) method. The electrostatic potential analysis of monomer 7‐3′PI and 7‐(3′‐Pyridyl)indole‐water (7‐3′PI‐W) indicates that an intermolecular hydrogen bond between two waters can be formed for 7‐(3′‐Pyridyl)indole‐2water (7‐3′PI‐2W) complex. The calculated bond lengths of the intermolecular hydrogen bonds of 7‐3′PI‐W and 7‐3′PI‐2W in the S 1 state (the first excited singlet state) are all shortened compared to the ground state. By the analysis of bond length, charge population and infrared spectra, it is demonstrated that the intermolecular hydrogen bonds of 7‐3′PI‐W and 7‐3′PI‐2W are all strengthened upon electronic excitation to the S1 state. Moreover, the fluorescence of 7‐3′PI‐W and 7‐3′PI‐2W are all red‐shifted to larger wavelength compared to monomer 7‐3′PI. The red‐shift of fluorescence peak of 7‐3′PI‐W and 7‐3′PI‐2W should be attributed to the change of hydrogen bond interaction before and after photoexcitation. Therefore, it can be concluded that the intermolecular hydrogen bonding strengthening in the excited S 1 state induces the fluorescence weakening of 7‐3′PI.