Premium
Preparation and Application of Immobilized Fullerene C60‐Heparin for Anticoagulation of Blood
Author(s) -
Lin TsuiLien,
Wen HsiangPing,
Shih ChunChe,
Shih JengShong
Publication year - 2012
Publication title -
journal of the chinese chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.329
H-Index - 45
eISSN - 2192-6549
pISSN - 0009-4536
DOI - 10.1002/jccs.201200299
Subject(s) - heparin , chemistry , fullerene , clotting time , coating , whole blood , low molecular weight heparin , adsorption , molecule , chromatography , platelet , organic chemistry , surgery , biochemistry , immunology , medicine , biology
The interaction between fullerene C60 and heparin was studied using a fullerene C60‐coated piezoelectric quartz crystal sensor. The irreversible response of the piezoelectric quartz crystal was found which could be attributed to the quite strong adsorption of heparin onto the C60 molecule. Immobilized fullerene C60‐Heparin was prepared and successfully applied as a good inhibitor for blood clotting. Like solvated heparin, both wet and dry C60‐heparin solid all demonstrated excellent ability of anticoagulation of blood. The blood clotting time with C60‐heparin solid was found to be > 7 days, while only 17.9 min required for blood clotting time in the absence of C60‐heparin solid. Furthermore, the C60‐heparin coated artificial PVC blood vessels were prepared by coating fullerene C60 onto the surface of artificial PVC blood vessels, followed by the adsorption of water solvated heparin onto the fullerene C60 molecule to form C60‐heparin coating. The blood clotting time of blood in artificial PVC blood vessels with C60‐heparin coating was found to be > 30 days, while only ≤ 30 min. of blood clotting time without the C60‐Heparin coating was observed. The C60‐heparin coated artificial PVC blood vessels can be expected to be employed in human body for the anticoagulation of blood.