Premium
Study on the Gas Permeability of Nickel(II) Polyurethane Complexes
Author(s) -
Chao MinShiun
Publication year - 2003
Publication title -
journal of the chinese chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.329
H-Index - 45
eISSN - 2192-6549
pISSN - 0009-4536
DOI - 10.1002/jccs.200300160
Subject(s) - chemistry , fourier transform infrared spectroscopy , hydrogen bond , differential scanning calorimetry , thermogravimetric analysis , permeability (electromagnetism) , ionic bonding , polymer chemistry , intermolecular force , polyurethane , membrane , chemical engineering , ion , molecule , organic chemistry , thermodynamics , biochemistry , physics , engineering
Abstract Ionic polyurethanes (PUs) were prepared from hydroxyl‐terminated polybutadiene (HTPB) and 4,4′‐dicyclohexylmethane diisocyanate (H 12 MDI) by a two‐stage method. The ionic group was introduced by adding 4,8‐diazaundecanediamide (L‐2,3,2) as the chain extender of which the tertiary amines and carbonyl groups were complexed with nickel ions. It was found that the binding of hard segments and the flexibility of soft segments had subtle effects on the gas permeability. The effects of hard segment content and the amount of nickel ion on the gas permeability and morphological properties were investigated. Fourier transform infrared (FTIR) spectroscopy was utilized to identify the segregation between hard and soft segments and structure change, which affect the transport properties. The hydrogen bonding index (HBI), frequency difference, and shift as a measure of the phase segregation and the average strength of the interpolymer hydrogen bonds were utilized to study the intermolecular interaction and transport property of the prepared PUs. The oxygen and nitrogen permeabilities of membranes were determined by using gas permeability analyzer. The results of FTIR, differential scanning calorimetry and thermogravimetric analysis measurements explain the complexation and, hence, the gas permeability.