z-logo
Premium
Macrocyclic Polyether Phase Transfer Catalysts for Free Radical Polymerization of Acrolein
Author(s) -
Hsu HuiPing,
Shih JengShong
Publication year - 2001
Publication title -
journal of the chinese chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.329
H-Index - 45
eISSN - 2192-6549
pISSN - 0009-4536
DOI - 10.1002/jccs.200100004
Subject(s) - chemistry , polymerization , polymer chemistry , potassium persulfate , chain transfer , ammonium persulfate , crown ether , radical polymerization , bulk polymerization , solution polymerization , organic chemistry , polymer , ion
Macrocyclic polyethers, e.g., crown ethers and cryptands, were prepared and employed as phase transfer catalysts for free radical polymerization of acrolein, a vinyl monomer, with persulfates (S 2 O 8 2– ) as initiators. The catalytic abilities of various macrocyclic polyethers as catalysts for the free radical polymerization of acrolein were found to be in the order: benzo‐15‐crown‐5 > dibenzo‐18‐crown‐6 > 12‐crown‐4 > 15‐crown‐5 > 18‐crown‐6 > cryptand‐22 with sodium persulfate (Na 2 S 2 O 8 ) as initiator. Sodium persulfate proved to be a better initiator than ammonium persulfate or potassium persulfate with benzo‐15‐crown‐5 as a catalyst. Effects of solvents and temperature on the catalytic polymerization were also investigated. The polymerization rates in various solvents were in the order: dioxane > benzene > acetonitrile > acetone > dichloromethane > hexane > water. Comparison between bulk polymerization and solution polymerization was also made. Higher polymerization rate was observed at higher temperature. The molecular weights of polyacrolein and the conversion of monomer in reaction period were determined with gel permeation chromatography and ultra‐violet spectrophotometry, respectively. Concentration effects of crown ether and initiator were also investigated and discussed.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here