Premium
Cholesterol Monohydrate Dissolution in Bile Salt‐Lecithin Solutions
Author(s) -
Liu ChenLun,
Hsu ChiFeng
Publication year - 2000
Publication title -
journal of the chinese chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.329
H-Index - 45
eISSN - 2192-6549
pISSN - 0009-4536
DOI - 10.1002/jccs.200000062
Subject(s) - micelle , chemistry , dissolution , lecithin , critical micelle concentration , salt (chemistry) , reaction rate constant , chromatography , analytical chemistry (journal) , aqueous solution , kinetics , organic chemistry , physics , quantum mechanics
A modified dissolution rate equation was used to quantitatively investigate the contribution of simple bile salt (BS) micelles and mixed BS‐lecithin (L) micelles to a cholesterol monohydrate (ChM) dissolution. Using a least‐squares technique to assess the relationship between the ChM dissolution rate and BS concentration at a constant L concentration, good curve‐fittings were obtained when the BS monomer concentration was set to equal the critical micellar concentration (CMC). For taurochenodeoxycholate (TCDC), a dihydroxy BS, the resulting values of parameters show that the simple TCDC micelle rate constant (ks) increases, but the mixed TCDC‐L micelle rate constant (k M ) decreases with increasing L concentrations. As for taurocholate (TC), a tri‐hydroxy BS, a ChM dissolution study was conducted over the initial 2 hour period in different TC‐L solutions. A similar curve‐fitting analysis revealed that the simple TC micelle ks is independent of L concentration and is much higher than the k M of mixed TC‐L micelles. Moreover, the outcome of the analysis supports previously reported equilibrium dialysis study results concerning the BS to L ratio of mixed BS‐L micelles. According to the collision theory, the resulting ks and k M values are interpreted.