z-logo
Premium
Flexible ligand docking without parameter adjustment across four ligand–receptor complexes
Author(s) -
Clark Kevin P.
Publication year - 1995
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/jcc.540161004
Subject(s) - docking (animal) , protein–ligand docking , computer science , searching the conformational space for docking , ligand (biochemistry) , molecular dynamics , algorithm , chemistry , computational chemistry , binding site , receptor , virtual screening , biochemistry , medicine , nursing
Abstract Understanding molecular recognition is one of the fundamental problems in molecular biology. Computationally, molecular recognition is formulated as a docking problem. Ideally, a molecular docking algorithm should be computationally efficient, provide reasonably thorough search of conformational space, obtain solutions with reasonable consistency, and not require parameter adjustments. With these goals in mind, we developed DIVALI (Docking wIth eVolutionary AlgorIthms), a program which efficiently and reliably searches for the possible binding modes of a ligand within a fixed receptor. We use an AMBER‐type potential function and search for good ligand conformations using a genetic algorithm (GA). We apply our system to study the docking of both rigid and flexible ligands in four different complexes. Our results indicate that it is possible to find diverse binding modes, including structures like the crystal structure, all with comparable potential function values. To achieve this, certain modifications to the standard GA recipe are essential. © 1995 John Wiley & Sons, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here