z-logo
Premium
New approach to the semiempirical calculation of atomic charges for polypeptides and large molecular systems
Author(s) -
Sternberg Ulrich,
Koch Frank–thomas,
Möllhoff Margit
Publication year - 1994
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/jcc.540150505
Subject(s) - chemistry , intramolecular force , ab initio , point particle , partial charge , ab initio quantum chemistry methods , computational chemistry , molecular orbital , atomic charge , molecular geometry , molecular orbital theory , molecule , atomic physics , physics , quantum mechanics , stereochemistry , organic chemistry
Starting from the bond polarization theory (BPT), a new semiempirical method for the calculation of net atomic charges is developed. The bond polarization theory establishes a linear dependence of atomic charges from the bond polarization energy. This energy is calculated from the hybrid orbitals forming a bond and the point charges within the neighborhood. Empirical parameters are introduced for the polarity of an unpolarized bond and for the change of the atomic charge with σ‐ and π‐bond polarization. Because these parameters are linear, they can be calibrated directly using net atomic charges from ab initio calculations. This procedure was performed using the charges from STO3G calculations on a set of 18 amino acids. Using the two parameters for CH, OH, σ‐CO, and NH bonds and the three parameters for CC, CO, and CN bonds, the 350 ab initio charges can be reproduced with high accuracy by solving sets of linear equations for the charges. The calculation of charges for large molecular systems including all inter‐ and intramolecular mutual polarizations requires only a few seconds (up to 100 atoms) or minutes (700 atoms) on a PC. This procedure is well suited for the application in molecular mechanics or molecular dynamics programs to overcome the limitations of most force fields used up to now. One of the weakest points in these programs is the use of fixed or topological charges to define the electrostatic potential. As an application of the new method, we calculated the interaction energy of an ion with valinomycin. This ring molecule forms octahedral oxygen cages around ions like potassium and acts thereby as selective ion carrier. To accomplish this function, valinomycin has to strip off the hydratization spheres of the ions, and therefore its preference for certain types of ions could be deduced from the interaction energies. © 1994 by John Wiley & Sons, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here