z-logo
Premium
Comparison of atomic charges derived via different procedures
Author(s) -
Wiberg Kenneth B.,
Rablen Paul R.
Publication year - 1993
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/jcc.540141213
Subject(s) - chemistry , dipole , atomic charge , molecular orbital , computational chemistry , mulliken population analysis , atomic orbital , molecule , basis set , ab initio , charge density , charge (physics) , chemical polarity , atomic physics , density functional theory , physics , quantum mechanics , organic chemistry , electron
Atomic charges were obtained from ab initio molecular orbital calculations using a variety of procedures to compare them and assess their utility. Two procedures based on the molecular orbitals were examined, the Mulliken population analysis and the Weinhold–Reed Natural Population Analysis. Two procedures using the charge density distribution were included; the Hirshfeld procedure and Bader's Atoms in Molecules method. Charges also were derived by fitting the electrostatic potential (CHELPG) and making use of the atomic polar tensors (GAPT). The procedures were first examined for basis set independence, and then applied to a group of hydrocarbons. The dipole moments for these molecules were computed from the various atomic charges and compared to the total SCF dipole moments. This was followed by an examination of a series of substituted methanes, simple hydrides, and a group of typical organic compounds such as carbonyl derivatives, nitriles, and nitro compounds. In some cases, the ability of the charges to reproduce electrostatic potentials was examined. © John Wiley & Sons, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here