z-logo
Premium
Voronoi binding site models
Author(s) -
Crippen Gordon M.
Publication year - 1987
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/jcc.540080703
Subject(s) - binding site , ligand (biochemistry) , chemistry , binding energy , similarity (geometry) , computational chemistry , outlier , computer science , physics , quantum mechanics , artificial intelligence , biochemistry , receptor , image (mathematics)
A frequently occurring problem in drug design and enzymology is that the binding constants for several compounds to the same site are known, but the geometry and energetic interactions of the site are not. This paper presents in detail a novel approach to the problem which accurately but compactly represents the allowed conformation space of each ligand, accurately depicts their three‐dimensional structures, and realistically allows each ligand to adopt the conformation and positioning in the site which is most favorable energetically. The investigator supplies only the ligand structures and observed binding free energies, along with a proposed site geometry. With no further assumptions about how the ligands bind and what parts of the ligands are important in determining the binding, the algorithm fits the observed binding energies without leaving outliers, predicts exactly how each of the given ligands binds in the site, and predicts the strength and mode of binding of new compounds, regardless of chemical similarity to the original set of ligands. The method is illustrated by devising a simple site that accounts for the binding of five polychlorinated biphenyls to thyroxine binding prealbumin. This model then predicts the binding energies correctly for an additional six biphenyls, and fails on one compound.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here