z-logo
Premium
Computation of electron repulsion integrals using the rys quadrature method
Author(s) -
Rys J.,
Dupuis M.,
King H. F.
Publication year - 1983
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/jcc.540040206
Subject(s) - computation , quadrature (astronomy) , basis function , basis (linear algebra) , slater integrals , gaussian , angular momentum , gauss–kronrod quadrature formula , gauss–jacobi quadrature , order of integration (calculus) , trigonometric integral , gaussian quadrature , numerical integration , set (abstract data type) , mathematics , computer science , mathematical analysis , physics , algorithm , classical mechanics , nyström method , quantum mechanics , integral equation , geometry , optics , trigonometry , programming language
Following an earlier proposal to evaluate electron repulsion integrals over Gaussian basis functions by a numerical quadrature based on a set of orthogonal polynomials (Rys polynomials),\documentclass{article}\pagestyle{empty}\begin{document} $$ (\eta \eta \parallel \eta \eta) = 2(\rho/\pi)^{1/2} \sum\limits_{\alpha = 1, N} I_x(u_{\alpha})I_{y}(u_{\alpha}) I_z(u_{\alpha})W_{\alpha} $$ \end{document} a computational procedure is outlined for efficient evaluation of the two‐dimensional integrals I x , I y , and I z . Compact recurrence formulas for the integrals make the method particularly fitted to handle high‐angular‐momentum basis functions. The technique has been implemented in the HONDO molecular orbital program.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here